By Topic

Analysis of event detection delay in wireless sensor networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yunbo Wang ; Dept. of Comput. Sci. & Eng., Univ. of Nebraska-Lincoln, Lincoln, NE, USA ; Vuran, Mehmet C. ; Goddard, S.

Emerging applications of wireless sensor networks (WSNs) require real-time event detection to be provided by the network. In a typical event monitoring WSN, multiple reports are generated by several nodes when a physical event occurs, and are then forwarded through multi-hop communication to a sink that detects the event. To improve the event detection reliability, usually timely delivery of a certain number of packets is required. Traditional timing analysis of WSNs are, however, either focused on individual packets or traffic flows from individual nodes. In this paper, a spatio-temporal fluid model is developed to capture the delay characteristics of event detection in large-scale WSNs. More specifically, the distribution of delay in event detection from multiple reports is modeled. Accordingly, metrics such as mean delay and soft delay bounds are analyzed for different network parameters. Motivated by the fact that queue build up in WSNs with low-rate traffic is negligible, a lower-complexity model is also developed. Testbed experiments and simulations are used to validate the accuracy of both approaches. The resulting framework can be utilized to analyze the effects of network and protocol parameters on event detection delay to realize real-time operation in WSNs. To the best of our knowledge, this is the first approach that provides a transient analysis of event detection delay when multiple reports via multi-hop communication are needed.

Published in:

INFOCOM, 2011 Proceedings IEEE

Date of Conference:

10-15 April 2011