Cart (Loading....) | Create Account
Close category search window
 

Simultaneous Design Optimization of Permanent Magnet, Coils, and Ferromagnetic Material in Actuators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jaewook Lee ; Toyota Res. Inst., Toyota Motor Eng. & Manuf. North America, Ann Arbor, MI, USA ; Dede, E.M. ; Nomura, T.

This paper presents structural topology optimization of an electro/permanent magnet linear actuator. The optimization goal is to maximize the average magnetic force acting on a plunger that travels over a distance of 20 mm. To achieve this goal, the magnetic field sources (i.e., permanent magnet, positive and negative direction coils), and ferromagnetic material of the yoke are simultaneously co-designed using four design variables for each finite element. The magnetic force is calculated using the Maxwell stress tensor method coupled with finite-element analysis. The optimization sensitivity analysis is performed using the adjoint method, and the optimization problem is solved using a sequential linear programming method. To illustrate the utility of the proposed design approach, linear actuators are designed, and the optimal shapes and locations of the yoke permanent magnet, coils, and ferromagnetic part are provided. In addition, the effects of the PM magnetization direction and the current density strength on design results are described.

Published in:

Magnetics, IEEE Transactions on  (Volume:47 ,  Issue: 12 )

Date of Publication:

Dec. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.