By Topic

Nerve Growth Factor-Immobilized Electrically Conducting Fibrous Scaffolds for Potential Use in Neural Engineering Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Jae Y. Lee ; University of California at Berkeley, ; Chris A. Bashur ; Craig A. Milroy ; Leandro Forciniti
more authors

Engineered scaffolds simultaneously exhibiting multiple cues are highly desirable for neural tissue regeneration. To this end, we developed a neural tissue engineering scaffold that displays submicrometer-scale features, electrical conductivity, and neurotrophic activity. Specifically, electrospun poly(lactic acid-co-glycolic acid) (PLGA) nanofibers were layered with a nanometer thick coating of electrically conducting polypyrrole (PPy) presenting carboxylic groups. Then, nerve growth factor (NGF) was chemically immobilized onto the surface of the fibers. These NGF-immobilized PPy-coated PLGA (NGF-PPyPLGA) fibers supported PC12 neurite formation (28.0±3.0% of the cells) and neurite outgrowth (14.2 μm median length), which were comparable to that observed with NGF (50 ng/mL) in culture medium (29.Oil.3%, 14.4 μm). Electrical stimulation of PC12 cells on NGF-immobilized PPyPLGA fiber scaffolds was found to further improve neurite development and neurite length by 18% and 17%, respectively, compared to unstimulated cells on the NGF-immobilized fibers. Hence, submicrometer-scale fibrous scaffolds that incorporate neurotrophic and electroconducting activities may serve as promising neural tissue engineering scaffolds such as nerve guidance conduits.

Published in:

IEEE Transactions on NanoBioscience  (Volume:11 ,  Issue: 1 )