Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Modeling and Evaluation of Carbon-Nanotube-Based Integrated Power Inductor for On-Chip Switching Power Converters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Mousa, O.F. ; Dept. of Electr. & Comput. Eng., Univ. of Alabama, Tuscaloosa, AL, USA ; Abu Qahouq, J.A.

This paper presents a nanotechnology-based high power-density and low-power-loss on-chip power inductor for dc-dc switching power converters. This power inductor utilizes a composite of bundled multiwalled (concentric) carbon nanotubes (BMWCNTs) and Fe (iron) in order to achieve high performance in a small size. Titanium (Ti) is then added as a coating material on the BMWCNT-based power inductor. The BMWCNT-based power inductor with a single layer and three turns occupies an area of 200 μm × 200 μm. It exhibits an inductance of 206 nH, a quality factor of 427 at 20 MHz, and a dc rated current of 100 mA. The power inductor size and the performance characteristics are competitive with state-of-the-art power inductors. The design, analysis, modeling, and simulation results of the BMWCNT-based power inductor are presented and compared with state-of-the-art conventional power inductors from the literature.

Published in:

Electron Devices, IEEE Transactions on  (Volume:58 ,  Issue: 8 )