By Topic

Throughput and Energy Efficiency in Wireless Ad Hoc Networks With Gaussian Channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hanan Shpungin ; Dept. of Computer Science, University of Calgary, Calgary, Canada ; Zongpeng Li

This paper studies the bottleneck link capacity under the Gaussian channel model in strongly connected random wireless ad hoc networks, with n nodes independently and uniformly distributed in a unit square. We assume that each node is equipped with two transceivers (one for transmission and one for reception) and allow all nodes to transmit simultaneously. We draw lower and upper bounds, in terms of bottleneck link capacity, for homogeneous networks (all nodes have the same transmission power level) and propose an energy-efficient power assignment algorithm (CBPA) for heterogeneous networks (nodes may have different power levels), with a provable bottleneck link capacity guarantee of Ω(Blog(1+1/√nlog2n)), where B is the channel bandwidth. In addition, we develop a distributed implementation of CBPA with O(n2) message complexity and provide extensive simulation results.

Published in:

IEEE/ACM Transactions on Networking  (Volume:20 ,  Issue: 1 )