By Topic

Tracking Low-Precision Clocks With Time-Varying Drifts Using Kalman Filtering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hayang Kim ; Sch. of Electr. & Comput. Eng., Georgia Inst. of Technol., Atlanta, GA, USA ; Ma, Xiaoli ; Hamilton, B.R.

Clock synchronization is essential for a large number of applications ranging from performance measurements in wired networks to data fusion in sensor networks. Existing techniques are either limited to undesirable accuracy or rely on specific hardware characteristics that may not be available in certain applications. In this paper, we examine the clock synchronization problem in networks where nodes lack the high-accuracy oscillators or programmable network interfaces some previous protocols depend on. This paper derives a general model for clock offset and skew and demonstrates its application to real clock oscillators. We design an efficient algorithm based on this model to achieve high synchronization accuracy. This algorithm applies the Kalman filter to track the clock offset and skew. We demonstrate the performance advantages of our schemes through extensive simulations and real clock oscillator measurements.

Published in:

Networking, IEEE/ACM Transactions on  (Volume:20 ,  Issue: 1 )