By Topic

Cold atmospheric pressure plasma jets as sources of singlet delta oxygen for biomedical applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
6 Author(s)
Sousa, J. S. ; Centre for Plasma Physics, School of Mathematics and Physics, Queen’s University Belfast, University Road, Belfast BT7 1NN, Northern Ireland, United Kingdom ; Niemi, K. ; Cox, L. J. ; Algwari, Q. Th.
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link: 

Absolute densities of singlet delta oxygen (SDO) molecules were measured using infrared optical emission spectroscopy in the flowing effluents of two different atmospheric-pressure plasma jets (APPJs): a capacitively coupled radio-frequency-driven jet (rf-APPJ) and a lower frequency kilohertz-driven dielectric barrier discharge jet. The plasma jets were operated in helium, with small admixtures of molecular oxygen (O2 < 2%). High absolute SDO densities of up to 6.2 × 1015 cm-3 were measured at approximately 10 cm downstream. The rf-APPJ seems to be much more efficient in producing SDO. The influence of different parameters, such as gas flows and mixtures and power coupled to the plasmas, on the production of SDO by the two APPJs has been investigated. Despite the considerable differences between the two plasma jets (excitation frequency, electric field direction, inter-electrode distance, plasma propagation), similar dependencies on the oxygen admixture and on the dissipated power were found in both APPJs. However, opposite trends were observed for the gas flow dependence. The results presented in this paper show that the control of the external operating conditions of each APPJ enables the tailoring of the SDO composition of both plasma effluents. This provides scope to tune the plasma jets for desired applications, e.g., in biomedicine.

Published in:

Journal of Applied Physics  (Volume:109 ,  Issue: 12 )