By Topic

Low complexity linear MMSE equalization, channel decoding and estimation for frequency selective fast fading channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Abdellah, B. ; Lab. de Radiocommun. et de Traitement du Signal (LRTS), Univ. Laval Ste-Foy, Quebec City, QC, Canada ; Chouinard, J.-Y.

The present work focuses on low complexity (LC) Linear Minimum Mean Square Error (LMMSE) schemes in conjunction with the existing paradigm of turbo equalization (TE). As a consequence, the LC LMMSE equalizer was extended to new scenarios with unknown frequency selective fast fading Rayleigh channels. In this paper, the generalized Valenti and Woerner estimator is coupled with a LMMSE and LC LMMSE equalizer and used to accurately estimate the channel. Extrinsic information transfer (EXIT) charts are computed for the resulting TE to predict the decoding and equalization convergence behaviour. In addition, a comparison between TE using LC LMMSE and LMMSE equalizer is performed using bit error rate (BER) performance simulations.

Published in:

Systems, Signal Processing and their Applications (WOSSPA), 2011 7th International Workshop on

Date of Conference:

9-11 May 2011