By Topic

Rake: Semantics assisted network-based tracing framework

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Yao Zhao ; Bell Labs, Murray Hill, NJ, USA ; Yinzhi Cao ; Yan Chen ; Ming Zhang
more authors

The ability to trace request execution paths is critical for diagnosing performance faults in large-scale distributed systems. Previous black-box and white-box approaches are either inaccurate or invasive. We present a novel semantics-assisted gray-box tracing approach, called Rake, which can accurately trace individual request by observing network traffic. Rake infers the causality between messages by identifying polymorphic IDs in messages according to application semantics. To make Rake universally applicable, we design a Rake language so that users can easily describe necessary semantics of their applications while reusing the core Rake component. We evaluate Rake using a few popular distributed applications, including web search, distributed computing cluster, content provider network, and online chatting. Our results demonstrate Rake is much more accurate than the black-box approaches while requiring no modification to OS/applications. In the CoralCDN (a content distributed network) experiments, Rake links messages with much higher accuracy than WAP5, a state-of-the-art black-box approach. In the Hadoop (a distributed computing cluster platform) experiments, Rake helps reveal several previously unknown issues that may lead to performance degradation, including a RPC (Remote Procedure Call) abusing problem.

Published in:

Quality of Service (IWQoS), 2011 IEEE 19th International Workshop on

Date of Conference:

6-7 June 2011