Cart (Loading....) | Create Account
Close category search window
 

Electric field computation of composite line insulators up to 1200 kV AC

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Doshi, T. ; Sch. of Electr., Comput. & Energy Eng., Arizona State Univ., Tempe, AZ, USA ; Gorur, R.S. ; Hunt, J.

Satisfactory operation of composite insulators is intimately related to the surface electric field (stress) distribution. This paper presents results of calculation of the electric field distribution for composite insulators up to 1200 kV, using a 3D software package based on the Boundary Element Method. The impact of corona and grading rings, single and bundled conductors, insulator orientation (dead-end and suspension), single and double units, and surface condition (dry and wet) on the electric field distribution has been analyzed. For UHV systems (higher than 750 kV ac) the use of dual insulators with individual corona rings at the line and ground end and a common grading ring at the line end is beneficial. The existence of optimal dimensions of corona and grading arrangement has been illustrated on a 1000 kV insulator string. It was found that the dead end insulators experience higher electric stress when compared to their suspension counterparts and this difference gets more prominent as the system voltage increases.

Published in:

Dielectrics and Electrical Insulation, IEEE Transactions on  (Volume:18 ,  Issue: 3 )

Date of Publication:

June 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.