Cart (Loading....) | Create Account
Close category search window
 

Evaluation of overshoot rate of lightning impulse withstand voltage test waveform based on new base curve fitting methods - study on overshoot waveform in an actual test circuit

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ueta, G. ; Tokyo Electr. Power Co., Yokohama, Japan ; Tsuboi, T. ; Okabe, S.

In a lightning impulse withstand voltage test for large-sized electric power equipment, voltage waveforms sometimes contain overshoot due to the capacitance of the test equipment and the residual inductance of the test circuit including the power source. The authors have been studying fitting methods for extracting a reasonable base curve from this overshoot waveform. In the previous study, each of the fitting methods was applied to the overshoot waveform simulated using a mathematical equation to evaluate the respective merits and demerits. As the test waveform, the present paper used the overshoot waveform actually generated using a large-scale test circuit. This actual waveform was determined as one over which an oscillation waveform of several hundred kHz, which was actually at issue, was superimposed. The correct base curve of the actual waveform was derived through detailed analysis of the equivalent circuit of the test circuit and the overshoot rate was calculated based on this correct value. This correct overshoot rate was compared with that calculated using each of the fitting methods to evaluate which was an optimum fitting method. Consequently, it was found that an overshoot rate close to the correct value could be derived using the new base curve extraction method for the actual waveform. Meanwhile, it should be noted that the kfactor filtering scheme was implemented after the application of various fitting methods, and then the shape parameters of the test voltage waveforms, such as the crest value, wavefront duration, and wavetail duration, were almost identical, which confirmed that fitting methods had only a minor influence on the test voltage waveform.

Published in:

Dielectrics and Electrical Insulation, IEEE Transactions on  (Volume:18 ,  Issue: 3 )

Date of Publication:

June 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.