By Topic

Human action recognition in videos using keypoint tracking

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kara, Y.E. ; Bilgisayar Muhendisligi Bolumu, Bogazici Univ., Istanbul, Turkey ; Akarun, L.

In this study, a new system for computer vision-based recognition of human actions is presented. The proposed system uses videos as input. The approach is invariant of the location of the action and zoom levels, the appearance of the person, partial occlusions including self-occlusions and some viewpoint changes. It is robust against temporal length variations. Keypoints are tracked through time and the trajectories of tracked keypoints are used for interpreting the human action in the video. Then, features from videos are extracted. A group of features for describing a trajectory are proposed. Trajectories are clustered using these trajectory features. The clustered trajectories are used for describing an image sequence. Image sequence descriptors are the normalized histograms of the clusters of trajectories. At the final stage, the proposed system uses the descriptors of the image sequences in a supervised learning approach.

Published in:

Signal Processing and Communications Applications (SIU), 2011 IEEE 19th Conference on

Date of Conference:

20-22 April 2011