Cart (Loading....) | Create Account
Close category search window
 

Single channel speech-music separation using matching pursuit and spectral masks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Grais, E.M. ; Fac. of Eng. & Natural Sci., Sabanci Univ., Istanbul, Turkey ; Erdogan, Hakan

A single-channel speech music separation algorithm based on matching pursuit (MP) with multiple dictionaries and spectral masks is proposed in this work. A training data for speech and music signals is used to build two sets of magnitude spectral vectors of each source signal. These vectors' sets are called dictionaries, and the vectors are called atoms. Matching pursuit is used to sparsely decompose the magnitude spectrum of the observed mixed signal as a nonnegative weighted linear combination of the best atoms in the two dictionaries that match the mixed signal structure. The weighted sum of the resulting decomposition terms that include atoms from the speech dictionary is used as an initial estimate of the speech signal contribution in the mixed signal, and the weighted sum of the remaining terms for the music signal contribution. The initial estimate of each source is used to build a spectral mask that is used to reconstruct the source signals. Experimental results show that integrating MP with spectral mask gives good separation results.

Published in:

Signal Processing and Communications Applications (SIU), 2011 IEEE 19th Conference on

Date of Conference:

20-22 April 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.