By Topic

Gender estimation according to Gait by using ellipse fitting and static body parameter approaches

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Gurbuz, E. ; Bilgisayar Muhendisligi Bolumu, Ondokuz Mayis Univ., Samsun, Turkey ; Senyer, N.

In this study, by using Support Vector Machine (SVM) and Learning Vector Quantization (LVQ) classifiers, the issue of “gender estimation according to gait” is covered. The images used in the study are provided from the CASIA Gait Database. After the images are categorized according to gender, training and test data sets are constructed. In the next step, the gait images belonging to each person in the data sets are selected so that they complete a cycle (two footsteps), the remaining of the images are removed, and for each remaining array of images, feature extraction is carried out by using the ellipse fitting and static body parameter approaches together firstly in the literature. By giving the features extracted by using both of the approaches on the training dataset to SVM and LVQ classifiers, training processes are implemented and then, the features extracted from the test data by using the same approaches are given to these classifiers. After the classification processes, the average correct classification rates for SVM and LVQ are 100% and 90% respectively.

Published in:

Signal Processing and Communications Applications (SIU), 2011 IEEE 19th Conference on

Date of Conference:

20-22 April 2011