By Topic

Estimation of Battery State of Charge With H_{\infty } Observer: Applied to a Robot for Inspecting Power Transmission Lines

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Fei Zhang ; State Key Lab. of Robot., Chinese Acad. of Sci., Shenyang, China ; Guangjun Liu ; Lijin Fang ; Hongguang Wang

Battery state-of-charge (SOC) estimation is essential for a mobile robot, such as inspection of power transmission lines. It is often estimated using a Kalman filter (KF) under the assumption that the statistical properties of the system and measurement errors are known. Otherwise, the SOC estimation error may be large or even divergent. In this paper, without the requirement of the known statistical properties, a SOC estimation method is proposed using an H observer, which can still guarantee the SOC estimation accuracy in the worst statistical error case. Under the conditions of different currents and temperatures, the effectiveness of the proposed method is verified in the laboratory and field environments. With the comparison of the proposed method and the KF-based one, the experimental results show that the proposed method can still provide accurate SOC estimation when there exist inexact or unknown statistical properties of the errors. The proposed method has been applied successfully to the robot for inspecting the running 500-kV extra high voltage power transmission lines.

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:59 ,  Issue: 2 )