By Topic

Intelligent Friction Modeling and Compensation Using Neural Network Approximations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sunan Huang ; Dept. of Electr. & Comput. Eng., Nat. Univ. of Singapore, Singapore, Singapore ; Kok Kiong Tan

In this paper, we consider the friction compensation problem for a class of mechanical systems. The friction behavior is described by a nonlinear dynamical model. Since it is difficult to know the nonlinear parts in the frictional model accurately, two neural networks (NNs) are employed in the proposed intelligent controller. Due to the learning capability of the NNs, the designed NN controller can compensate the effects of the nonlinear friction. Stability of the thus proposed learning control system is guaranteed by a rigid proof. Simulation and experimental results are provided to verify the effectiveness of the proposed intelligent scheme.

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:59 ,  Issue: 8 )