By Topic

GPU-Based Fast Iterative Reconstruction of Fully 3-D PET Sinograms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Herraiz, J.L. ; Dept. Fis. Atomica, Mol. y Nucl., Univ. Complutense de Madrid, Madrid, Spain ; España, S. ; Cabido, R. ; Montemayor, A.S.
more authors

This work presents a graphics processing unit (GPU)-based implementation of a fully 3-D PET iterative reconstruction code, FIRST (Fast Iterative Reconstruction Software for [PET] Tomography), which was developed by our group. We describe the main steps followed to convert the FIRST code (which can run on several CPUs using the message passing interface [MPI] protocol) into a code where the main time-consuming parts of the reconstruction process (forward and backward projection) are massively parallelized on a GPU. Our objective was to obtain significant acceleration of the reconstruction without compromising the image quality or the flexibility of the CPU implementation. Therefore, we implemented a GPU version using an abstraction layer for the GPU, namely, CUDA C. The code reconstructs images from sinogram data, and with the same System Response Matrix obtained from Monte Carlo simulations than the CPU version. The use of memory was optimized to ensure good performance in the GPU. The code was adapted for the VrPET small-animal PET scanner. The CUDA version is more than 70 times faster than the original code running in a single core of a high-end CPU, with no loss of accuracy.

Published in:

Nuclear Science, IEEE Transactions on  (Volume:58 ,  Issue: 5 )