By Topic

Control of swarms of autonomous robots using Model Driven Development - A state-based approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ouellet, D. ; Dept. of Electr. & Comput. Eng., R. Mil. Coll. of Canada, Kingston, ON, Canada ; Givigi, S.N. ; Beaulieu, A.J.G.

Unmanned vehicular systems are becoming increasingly pervasive in military and civilian applications where the tedious repetitive and hazardous nature of the tasks make them indispensable. A natural progression is to bestow autonomy upon these vehicles. In this case, the resultant robots must be able to deal with unexpected circumstances on their own and, more importantly, in real-time. As a case study we focus on swarms of robots, we define as the capability of robots to keep close to each other in formation, without colliding with neighbors and obstacles. We start by modeling and simulating a possible swarm solution in MathWorks Matlab™ and, then, moving on to change the algorithm in such a way that a controller written as a Finite State Machine (FSM) may be derived. We then use IBM Rational Rose Real-Time™ (RoseRT) to implement such a controller in emulation following the formalism of Model-Driven Development (MDD).

Published in:

Systems Conference (SysCon), 2011 IEEE International

Date of Conference:

4-7 April 2011