By Topic

Optimal distributed and cooperative supervisory estimation of multi-agent systems subject to unreliable information

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
M. M. Tousi ; Department of Electrical and Computer Engineering, Concordia University, Montréal, Québec, Canada H3G 1M8 ; S. M. Azizi ; K. Khorasani

In this work, a novel framework for optimal cooperative supervisory estimation of multi-agent linear time-invariant (LTI) systems is proposed which is applicable to a large class of multi-agent systems. This framework was recently developed by the authors based on the notion of sub-observers and a discrete-event system (DES) supervisory control. Each sub-observer estimates certain states that are conditioned on given inputs, outputs, and states information. Moreover, the cooperation among the sub-observers is managed by a DES supervisor. In this work, our proposed supervisory estimation framework is extended to the combinatorial optimization domain. When certain anomalies (faults) are present in the system, or the sensors and sub-observers become unreliable, the proposed optimal DES supervisor makes decisions regarding the selection and reconfiguration of sets of sub-observers to estimate all the system states, while simultaneously a performance index that incorporates the communication cost, computation cost, and reconfiguration cost, and the number of invalid state estimates is minimized. The application of our proposed methodology in a practical industrial process is demonstrated through numerical simulations.

Published in:

Systems Conference (SysCon), 2011 IEEE International

Date of Conference:

4-7 April 2011