By Topic

Design of Herringbone Groove Disk Damper for Effective Suppression of Axial Vibration of Disk in Hard Disk Drive

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Moonho Choi ; Center for Inf. Storage Device, Yonsei Univ., Seoul, South Korea ; Yoon Chul Rhim

A herringbone groove pattern is applied to a plane disk damper of a hard disk drive to reduce the axial vibration of the disk rotating at high speed. According to the design parameters such as mean radius rm, ridge-groove ratio B, and spiral angle β , the performance of the herringbone groove disk damper is studied numerically in terms of the stiffness and the damping coefficients and the ratio of the axial stiffness to the frictional torque. The dynamic coefficients are calculated from the result of computational fluid dynamics solution of a simple hard disk drive model using four-point central difference scheme. To confirm the numerical results, the nonrepeatable run-out of the disk is measured when a plane or a herringbone groove disk damper is used. It is found that a herringbone groove disk damper increases the stiffness as well as the damping coefficient of the air film by 20% more than those of a plane disk damper.

Published in:

Magnetics, IEEE Transactions on  (Volume:47 ,  Issue: 7 )