By Topic

Dynamic Flying Height Adjustment in Hard Disk Drives Through Feedforward Control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Boettcher, U. ; Dept. of Mech. & Aerosp. Eng., Univ. of California, San Diego, La Jolla, CA, USA ; Li, H. ; de Callafon, R.A. ; Talke, F.E.

A dynamic model of the resistance heater element in a thermal flying height control (TFC) slider of a hard disk drive is identified and used for dynamic flying height control. Experimental data obtained on a spin stand and a generalized realization algorithm are used for identification of a discrete-time dynamic model of the thermal actuator. The flying height change is measured in two different ways: using servo burst information written onto the disk surface and using information written in the data sectors only. The resistance change of the thermal actuator based on the input power level is measured. Based on the identified discrete-time model of the heater and using convex optimization techniques, a computational scheme is proposed to obtain optimized feedforward input profiles to the heater element that minimize repeatable flying height variations and enable low flying heights.

Published in:

Magnetics, IEEE Transactions on  (Volume:47 ,  Issue: 7 )