By Topic

Optimization models for energy reallocation in a smart grid

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Kendall E. Nygard ; Department of Computer Science, North Dakota State University, Fargo, USA ; Steve Bou Ghosn ; Md. Minhaz Chowdhury ; Davin Loegering
more authors

When a malfunction occurs in a Smart Grid electricity provisioning system, it is vitally important to quickly diagnose the problem and take corrective action. The self-healing problem refers to the need to take action in near real time to reallocate power to minimize the disruption. To address this need, we present a collection of integer linear programming (ILP) models designed to identify optimal combinations of supply sources, demand sites for them to serve, and the pathways along which the reallocated power should flow. The models explicitly support the uncertainty associated with alternative sources such as wind power. A simulator configured with multiple intelligent distributed software agents has been developed to support the evaluation of the model solutions.

Published in:

Computer Communications Workshops (INFOCOM WKSHPS), 2011 IEEE Conference on

Date of Conference:

10-15 April 2011