Cart (Loading....) | Create Account
Close category search window
 

Frame Design and Throughput Evaluation for Practical Multiuser MIMO OFDMA Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yong-Up Jang ; Inst. for Inf. Technol. Convergence, Korea Adv. Inst. of Sci. & Technol., Daejeon, South Korea ; Jingon Joung ; Won-Yong Shin ; Eui-Rim Jeong

This paper describes the design of a time-division duplexing frame with a variety of pilots for multiuser multiple-input-multiple-output orthogonal frequency-division multiple access (MU-MIMO OFDMA) systems, where the base station and users are equipped with four and two transmitting and receiving antennas, respectively. In addition, a simplified scheduling algorithm for the MU-MIMO OFDMA is proposed, and its computational complexity is analyzed. The proposed scheduling algorithm shows comparable sum achievable rates to the optimal MU-MIMO OFDMA scheduling that searches for user pairs in an exhaustive manner, whereas its complexity is fairly reduced. Furthermore, to verify the performance of MU-MIMO OFDMA systems that employ the proposed frame structure and scheduling algorithm, a system-level comparison of the average cell throughputs between the proposed MU-MIMO and the conventional MIMO OFDMA systems is numerically performed in a practical cellular environment. As a result, vital information on how we can apply MU-MIMO OFDMA schemes in cellular environments is provided.

Published in:

Vehicular Technology, IEEE Transactions on  (Volume:60 ,  Issue: 7 )

Date of Publication:

Sept. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.