By Topic

Detection and Classification of Traffic Anomalies Using Microscopic Traffic Variables

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Javier A. Barria ; Department of Electrical and Electronic Engineering, Imperial College London, London, U.K. ; Suttipong Thajchayapong

This paper proposes a novel anomaly detection and classification algorithm that combines the spatiotemporal changes in the variability of microscopic traffic variables, namely, relative speed, intervehicle time gap, and lane changing. When applied to real-world scenarios, the proposed algorithm can use the variances of statistics of microscopic traffic variables to detect and classify traffic anomalies. Based on a simulation environment, it is shown that, with minimum prior knowledge and partial availability of microscopic traffic information from as few as 20% of the vehicle population, the proposed algorithm can still achieve 100% detection rates and very low false alarm rates, which outperforms previous algorithms monitoring loop detectors that are ideally placed at locations where anomalies originate.

Published in:

IEEE Transactions on Intelligent Transportation Systems  (Volume:12 ,  Issue: 3 )