By Topic

Semisupervised Band Clustering for Dimensionality Reduction of Hyperspectral Imagery

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Hongjun Su ; Key Lab. of Virtual Geographic Environ., Nanjing Normal Univ., Nanjing, China ; He Yang ; Qian Du ; Yehua Sheng

Band clustering is applied to dimensionality reduction of hyperspectral imagery. Different from unsupervised clustering using all the pixels or supervised clustering requiring labeled pixels, the proposed semisupervised band clustering needs class spectral signatures only. After clustering, a cluster selection step is applied to select clusters to be used in the following data analysis. Initial conditions and distance metrics are also investigated to improve the clustering performance. The experimental results show that the proposed algorithm can outperform other existing methods with lower computational cost.

Published in:

Geoscience and Remote Sensing Letters, IEEE  (Volume:8 ,  Issue: 6 )