By Topic

A Solution to the Crucial Problem of Population Degeneration in High-Dimensional Evolutionary Optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Wei Chu ; Dept. of Civil & Environ. Eng., Univ. of California, Irvine, CA, USA ; Xiaogang Gao ; Sorooshian, S.

Three popular evolutionary optimization algorithms are tested on high-dimensional benchmark functions. An important phenomenon responsible for many failures - “population degeneration” - is discovered. That is, through evolution, the population of searching particles degenerates into a subspace of the search space, and the global optimum is exclusive from the subspace. Subsequently, the search will tend to be confined to this subspace and eventually miss the global optimum. Principal components analysis (PCA) is introduced to discover population degeneration and to remedy its adverse effects. The experiment results reveal that an algorithm's efficacy and efficiency are closely related to the population degeneration phenomenon. Guidelines for improving evolutionary algorithms for high-dimensional global optimization are addressed. An application to highly nonlinear hydrological models demonstrates the efficacy of improved evolutionary algorithms in solving complex practical problems.

Published in:

Systems Journal, IEEE  (Volume:5 ,  Issue: 3 )