By Topic

On the Distribution of Bugs in the Eclipse System

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Concas, G. ; Dept. of Electr. & Electron. Eng., Univ. of Cagliari, Cagliari, Italy ; Marchesi, M. ; Murgia, A. ; Tonelli, R.
more authors

The distribution of bugs in software systems has been shown to satisfy the Pareto principle, and typically shows a power-law tail when analyzed as a rank-frequency plot. In a recent paper, Zhang showed that the Weibull cumulative distribution is a very good fit for the Alberg diagram of bugs built with experimental data. In this paper, we further discuss the subject from a statistical perspective, using as case studies five versions of Eclipse, to show how log-normal, Double-Pareto, and Yule-Simon distributions may fit the bug distribution at least as well as the Weibull distribution. In particular, we show how some of these alternative distributions provide both a superior fit to empirical data and a theoretical motivation to be used for modeling the bug generation process. While our results have been obtained on Eclipse, we believe that these models, in particular the Yule-Simon one, can generalize to other software systems.

Published in:

Software Engineering, IEEE Transactions on  (Volume:37 ,  Issue: 6 )