Cart (Loading....) | Create Account
Close category search window
 

A 2D Flow Visualization User Study Using Explicit Flow Synthesis and Implicit Task Design

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Zhanping Liu ; Dept. of Comput. Sci., Kentucky State Univ., Frankfort, KY, USA ; Shangshu Cai ; Swan, J.E. ; Moorhead, R.J.
more authors

This paper presents a 2D flow visualization user study that we conducted using new methodologies to increase the objectiveness. We evaluated grid-based variable-size arrows, evenly spaced streamlines, and line integral convolution (LIC) variants (basic, oriented, and enhanced versions) coupled with a colorwheel and/or rainbow color map, which are representative of many geometry-based and texture-based techniques. To reduce data-related bias, template-based explicit flow synthesis was used to create a wide variety of symmetric flows with similar topological complexity. To suppress task-related bias, pattern-based implicit task design was employed, addressing critical point recognition, critical point classification, and symmetric pattern categorization. In addition, variable-duration and fixed-duration measurement schemes were utilized for lightweight precision-critical and heavyweight judgment-intensive flow analysis tasks, respectively, to record visualization effectiveness. We eliminated outliers and used the Ryan REGWQ post-hoc homogeneous subset tests in statistical analysis to obtain reliable findings. Our study shows that a texture-based dense representation with accentuated flow streaks, such as enhanced LIC, enables intuitive perception of the flow, while a geometry-based integral representation with uniform density control, such as evenly spaced streamlines, may exploit visual interpolation to facilitate mental reconstruction of the flow. It is also shown that inappropriate color mapping (e.g., colorwheel) may add distractions to a flow representation.

Published in:

Visualization and Computer Graphics, IEEE Transactions on  (Volume:18 ,  Issue: 5 )

Date of Publication:

May 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.