Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Aho-Corasick String Matching on Shared and Distributed-Memory Parallel Architectures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Tumeo, A. ; High Performance Comput. Group, Pacific Northwest Nat. Lab. (PNNL), Richland, WA, USA ; Villa, O. ; Chavarria-Miranda, D.G.

String matching requires a combination of (sometimes all) the following characteristics: high and/or predictable performance, support for large data sets and flexibility of integration and customization. This paper compares several software-based implementations of the Aho-Corasick algorithm for high-performance systems. We focus on the matching of unknown inputs streamed from a single source, typical of security applications and difficult to manage since the input cannot be preprocessed to obtain locality. We consider shared-memory architectures (Niagara 2, x86 multiprocessors, and Cray XMT) and distributed-memory architectures with homogeneous (InfiniBand cluster of x86 multicores) or heterogeneous processing elements (InfiniBand cluster of x86 multicores with NVIDIA Tesla C1060 GPUs). We describe how each solution achieves the objectives of supporting large dictionaries, sustaining high performance, and enabling customization and flexibility using various data sets.

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:23 ,  Issue: 3 )