By Topic

A Parallel Hardware Architecture for Real-Time Object Detection with Support Vector Machines

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kyrkou, C. ; Univ. of Cyprus, Nicosia, Cyprus ; Theocharides, T.

Object detection applications are often associated with real-time performance constraints that stem from the embedded environment that they are often deployed in. Consequently, researchers have proposed dedicated hardware architectures, utilizing a variety of classification algorithms targeting object detection. Support Vector Machines (SVMs) is among the most popular classification algorithms used in object detection yielding high accuracy rates. However, existing SVM hardware implementations attempting to speed up SVM classification, have either targeted only simple applications, or SVM training. As such, there are limited proposed hardware architectures that are generic enough to be used in a variety of object detection applications. Hence, this paper presents a parallel array architecture for SVM-based object detection, in an attempt to show the advantages, and performance benefits that stem from a dedicated hardware solution. The proposed hardware architecture provides parallel processing, resource sharing among the processing units, and efficient memory management. Furthermore, the size of the array is scalable to the hardware demands, and can also handle a variety of applications such as multiclass classification problems. A prototype of the proposed architecture was implemented on an FPGA platform and evaluated using three popular detection applications, demonstrating real-time performance (40-122 fps for a variety of applications).

Published in:

Computers, IEEE Transactions on  (Volume:61 ,  Issue: 6 )