By Topic

Performance Analysis of Network I/O Workloads in Virtualized Data Centers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Yiduo Mei ; China Center for Ind. Security Res., Beijing Jiaotong Univ., Beijing, China ; Ling Liu ; Xing Pu ; Sivathanu, S.
more authors

Server consolidation and application consolidation through virtualization are key performance optimizations in cloud-based service delivery industry. In this paper, we argue that it is important for both cloud consumers and cloud providers to understand the various factors that may have significant impact on the performance of applications running in a virtualized cloud. This paper presents an extensive performance study of network I/O workloads in a virtualized cloud environment. We first show that current implementation of virtual machine monitor (VMM) does not provide sufficient performance isolation to guarantee the effectiveness of resource sharing across multiple virtual machine instances (VMs) running on a single physical host machine, especially when applications running on neighboring VMs are competing for computing and communication resources. Then we study a set of representative workloads in cloud-based data centers, which compete for either CPU or network I/O resources, and present the detailed analysis on different factors that can impact the throughput performance and resource sharing effectiveness. For example, we analyze the cost and the benefit of running idle VM instances on a physical host where some applications are hosted concurrently. We also present an in-depth discussion on the performance impact of colocating applications that compete for either CPU or network I/O resources. Finally, we analyze the impact of different CPU resource scheduling strategies and different workload rates on the performance of applications running on different VMs hosted by the same physical machine.

Published in:

Services Computing, IEEE Transactions on  (Volume:6 ,  Issue: 1 )