By Topic

Impact of diversity reception on fading channels with coded modulation. II. Differential block detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ventura-Traveset, J. ; Eur. Space Res. & Technol. Centre, Noordwijk, Netherlands ; Caire, G. ; Biglieri, Ezio ; Taricco, Giorgio

For pt. I see ibid., vol.45, no.6, p.563-572, 1997. We study coded modulation with block differential detection in an arbitrarily correlated Rician fading channel with space diversity. Coded differential q-PSK is included in our analysis as a special case. A metric is chosen that is optimum for perfect interleaving, slow fading, and independent diversity branches. For slow fading, we compare the the cutoff rates of the channels resulting from different choices of block length N and diversity index M. Specifically, we show that block detection with diversity may or may not generate a better coding channel than usual differential detection, according to the code selected and the combination of values of M and N. In particular, for low-diversity orders (M=1,2) and for low-to-medium code rates, differential detection is still an optimal or near-optimal solution, while for high-diversity orders (M⩾2) and medium-to-high code rates (up to uncoded modulation) block detection with N>2 can provide a significant gain. An error floor always exists when fading is fast. It decreases exponentially with the product of code diversity and space diversity, so that the latter emerges as a very effective technique for lowering the error floor of a system affected by fast fading. Performance examples based on actual coding schemes are also shown

Published in:

Communications, IEEE Transactions on  (Volume:45 ,  Issue: 6 )