By Topic

Finding Hamiltonian cycles on incrementally extensible hypercube graphs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Huan-Chao Keh ; Dept. of Comput. Sci. & Inf. Eng., Tamkang Univ., Taiwan ; Po-Yu Chou ; Jen-Chih Lin

The existence of a Hamiltonian cycle is the premise of usage in an interconnection network. A novel interconnection network, the incrementally extensible hypercube (IEH) graph, has been proposed. The IEH graphs are derived from hypercubes and also retain most of the properties of hypercubes. Unlike hypercubes without incremental extensibility, IEH graphs can be constructed in any number of nodes. In this paper, we present an algorithm to find a Hamiltonian cycle or path and prove that there exists a Hamiltonian cycle in all IEH graphs except for those containing exactly 2n-1 nodes

Published in:

High Performance Computing on the Information Superhighway, 1997. HPC Asia '97

Date of Conference:

28 Apr-2 May 1997