By Topic

Data compression of the ECG using neural network for digital Holter monitor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
A. Iwata ; Dept. of Electr. & Comput. Eng., Nagoya Inst. of Technol., Showa, Japan ; Y. Nagasaka ; N. Suzumura

A data-compression algorithm for digital Holter recording using artificial neural networks (ANNs) is described. A three-layer ANN that has a hidden layer with a few units is used to extract features of the ECG (electrocardiogram) waveform as a function of the activation levels of the hidden layer units. The number of output and input units is the same. The backpropagation algorithm is used for learning. The network is tuned with supervised signals that are the same as the input signals. One network (network 1) is used for data compression and another (network 2) is used for learning with current signals. Once the network is tuned, the common waveform features are encoded by the interconnecting weights of the network. The activation levels of the hidden units then express the respective features of the waveforms for each consecutive heartbeat.<>

Published in:

IEEE Engineering in Medicine and Biology Magazine  (Volume:9 ,  Issue: 3 )