Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

A 1320-nm experimental optical phase-locked loop: performance investigation and PSK homodyne experiments at 140 Mb/s and 2 Gb/s

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kazovsky, Leonid G. ; Bell Commun. Res., Red Bank, NJ, USA ; Atlas, D.A.

An experimental balanced optical phase-locked loop was constructed using two 1320 nm diode-laser pumped miniature Nd:YAG lasers. With a natural frequency of 13.5 kHz and a damping factor of 0.6, the loop phase error is less than 13.° when the received signal power P s is -65 dBm. For signal powers Ps⩾-62 dBm, the phase error is 0.3°, and is virtually independent of the signal power. When the natural frequency is 74 kHz, the damping factor is 0.03, and the DC gain is 68 MHz, the loop exhibits a chaotic behavior: it maintains the frequency lock, but not the phase lock. Using a phase-locked loop, phase-shift keying homodyne transmission is demonstrated at 140 Mb/S and 2 single-moded fiber is -62.8 dBm, corresponding to 25 photons/b

Published in:

Lightwave Technology, Journal of  (Volume:8 ,  Issue: 9 )