By Topic

Hybrid dynamic modeling and control of constrained manipulation systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
B. J. McCarragher ; Dept. of Eng. Fac., Australian Nat. Univ., Canberra, ACT, Australia ; G. Hovland ; P. Sikka ; P. Aigner
more authors

Discrete event systems are presented as a powerful framework for a large number of robot control tasks. This paper presents a general description of the discrete event modeling and control synthesis for robot manipulation. Additionally, methods for the effective monitoring of the process based on the detection and identification of discrete events are given. The effectiveness and versatility of the approach are demonstrated through a wide variety of experiments. Applications are demonstrated in assembly, online training of robots, advanced perception capabilities, human-robot shared control and the understanding of human manipulation skills

Published in:

IEEE Robotics & Automation Magazine  (Volume:4 ,  Issue: 2 )