By Topic

Extremely low threshold current operation in 1.5-μm MQW-DFB laser diodes with semi-insulating InP current blocking region

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Sasaki, T. ; NEC Corp., Kanagawa, Japan ; Yamazaki, H. ; Henmi, H. ; Yamada, H.
more authors

Threshold current operation of 1.5 mA was achieved for 1.5-μm multiple-quantum-well distributed feedback (MQW-DFB) laser diodes (LDs) with semi-insulating current blocking layers entirely grown by metalorganic vapor phase epitaxy (MOVPE). Such low-threshold current is attained by reducing leakage current and mirror loss in the laser structure. The required bias current for achieving several gigahertz bandwidth is markedly reduced due to the enhanced differential gain and low threshold current. Due to the reduced lasing delay time in such low threshold LDs, up to 5-GHz zero-bias current modulation, with a clear eye opening, is successfully demonstrated

Published in:

Lightwave Technology, Journal of  (Volume:8 ,  Issue: 9 )