By Topic

Experience with rule induction and k-nearest neighbor methods for interface agents that learn

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Payne, T.R. ; Dept. of Comput. Sci., Aberdeen Univ., UK ; Edwards, P. ; Green, C.L.

Interface agents are being developed to assist users with a variety of tasks. To perform effectively, such agents need knowledge of user preferences. An agent architecture has been developed which observes a user performing tasks, and identifies features which can be used as training data by a learning algorithm. Using the learned profile, an agent can give advice to the user on dealing with new situations. The architecture has been applied to two different information filtering domains: classifying incoming mail messages (Magi) and identifying interesting USENet news articles (UNA). This paper describes the architecture and examines the results of experimentation with different learning algorithms and different feature extraction strategies within these domains

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:9 ,  Issue: 2 )