Cart (Loading....) | Create Account
Close category search window

Comparative analysis of time frequency representations for discrimination of epileptic activity in EEG signals

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Martinez-Vargas, J.D. ; Univ. Nac. de Colombia, Sede Manizales, Colombia ; Avendano-Valencia, L.D. ; Giraldo, E. ; Castellanos-Dominguez, G.

Epilepsy is a brain pathology that affects approximately 40 million people in the world. The most utilized clinical test for epilepsy diagnose is the electroencephalogram (EEG). For this reason, nowadays are being developed multiple tools devised for automatic seizure detection on EEG signals. In this work, several approaches of TFR estimation for detection of epileptic events in EEG recordings are compared. Parametric (stochastic evolving and local estimation) TFR estimators as well as non-parametric (STFT, SPWV and CWT) are under study. Comparison is made according with the achieved performance using a recently proposed methodology for TFR based classification. Results show similar outcomings with all approaches for TFR estimation, achieving accuracy rates from 96 to 99%. Best performance was found for STFT and STTVAR approaches for TFR estimation.

Published in:

Neural Engineering (NER), 2011 5th International IEEE/EMBS Conference on

Date of Conference:

April 27 2011-May 1 2011

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.