By Topic

Multi Population Pattern Searching Algorithm: A New Evolutionary Method Based on the Idea of Messy Genetic Algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kwasnicka, H. ; Wroclaw Univ. of Technol., Wroclaw, Poland ; Przewozniczek, M.

One of the main evolutionary algorithms bottlenecks is the significant effectiveness dropdown caused by increasing number of genes necessary for coding the problem solution. In this paper, we present a multi population pattern searching algorithm (MuPPetS), which is supposed to be an answer to situations where long coded individuals are a must. MuPPetS uses some of the messy GA ideas like coding and operators. The presented algorithm uses the binary coding, however the objective is to use MuPPetS against real-life problems, whatever coding schema. The main novelty in the proposed algorithm is a gene pattern idea based on retrieving, and using knowledge of gene groups which contains genes highly dependent on each other. Thanks to gene patterns the effectiveness of data exchange between population individuals improves, and the algorithm gains new, interesting, and beneficial features like a kind of “selective attention” effect.

Published in:

Evolutionary Computation, IEEE Transactions on  (Volume:15 ,  Issue: 5 )