By Topic

Complementary Ring Oscillator Exclusively Prepared by Means of Gravure and Flexographic Printing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Kempa, H. ; Inst. of Print & Media Technol., Chemnitz Univ. of Technol., Chemnitz, Germany ; Hambsch, M. ; Reuter, K. ; Stanel, M.
more authors

A complementary ring oscillator has been prepared using exclusively fast and continuous rotary printing methods, namely, gravure and flexographic printing, so that all layers were additively deposited and no additional patterning nor interconnecting step whatsoever was involved. This became possible due to the availability of a printable air-stable n-type organic semiconductor, i.e., a small molecule perylene derivative. Using the same dielectric for both types of transistors, the characteristics of the n-type transistors are reasonably similar to the ones of the p-type transistors, which are based on the previously used organic semiconductor 6,13-bis(triisopropylsilylethynyl) pentacene. The printed circuits are robust against variations of individual transistor parameters and significantly outperform comparable unipolar circuits in terms of all relevant properties. The superior performance can be attributed to complementary circuitry, the advantage of which is thereby demonstrated for the case of printed circuits.

Published in:

Electron Devices, IEEE Transactions on  (Volume:58 ,  Issue: 8 )