Cart (Loading....) | Create Account
Close category search window
 

Sine Waveguide for 0.22-THz Traveling-Wave Tube

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Xiong Xu ; Vacuum Electron. Nat. Lab., Univ. of Electron. Sci. & Technol. of China, Chengdu, China ; Yanyu Wei ; Fei Shen ; Zhaoyun Duan
more authors

A novel slow-wave structure called sine waveguide has been proposed to develop a wideband high-power terahertz radiation source. The sine waveguide evolves from a rectangular waveguide oscillating with sinusoid along its longitudinal direction. This letter reports the electromagnetic characteristics of the sine waveguide and its effective surface plasmon amplification mechanism. From our calculation, this circuit structure possesses low ohmic losses and reflection and can be applied to produce terahertz waves ranging from 0.2 to 0.25 THz with several hundreds of watts. Moreover, the maximum gain and interaction efficiency may reach 37.7 dB and 9.6%, respectively.

Published in:

Electron Device Letters, IEEE  (Volume:32 ,  Issue: 8 )

Date of Publication:

Aug. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.