Cart (Loading....) | Create Account
Close category search window

Surface mapping brain function on 3D models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Payne, B.A. ; Lab. of Neuro Imaging, California Univ., Los Angeles, CA, USA ; Toga, A.W.

A flexible graphics system for displaying functional and anatomic data on arbitrary collections of surfaces on or within the brain is presented. The system makes it possible to show complex, convoluted surfaces with the shading cues necessary to understand their shapes; to vary viewpoint, object position, illumination, and perspective easily; to show multiple-objects in one view, with or without transparency, in order to examine internal surfaces and intersecting objects in relation to each other; and to superimpose quantitative information on biological or otherwise defined surfaces anywhere within the volume, thus furthering understanding of both quantitative and positional information in its global context. These display techniques are applied to a new form of biological surface model, the removed surface. The surface-removal method creates a set of surfaces internal to a given object, so that, given a specified distance, every point on the created surfaces is equidistant from the surface of the enclosing object. The method is based on thresholding a derived scalar field, the minimum distance field. Models made by this method have applications in 3-D neurobiology and provide an alternative to cutaways for viewing patterns of internal functional activity.<>

Published in:

Computer Graphics and Applications, IEEE  (Volume:10 ,  Issue: 5 )

Date of Publication:

Sept. 1990

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.