By Topic

Dynamics of laser-induced phase switching in GeTe films

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Gawelda, W. ; Laser Processing Group, Instituto de Óptica, CSIC, Serrano 121, E-28006 Madrid, Spain ; Siegel, J. ; Afonso, C.N. ; Plausinaitiene, V.
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.3596562 

Phase switching in GeTe thin films (grown using a modified metal organic chemical vapor deposition system) upon pulsed femtosecond and nanosecond laser irradiation has been studied. Two in situ methods, i.e., optical microscopy and real-time reflectivity measurements, have been used in order to compare the optical response before and after phase change and to follow the phase change dynamics with a time resolution close to 400 ps. The results show that cycling is possible under irradiation with both fs and ns pulses using single pulses for amorphization and multiple pulses for crystallization. The use of ns pulses favors the crystalline-to-amorphous phase transformation, with a characteristic transformation time of ∼15 ns. The presence of the liquid phase was identified and temporally resolved, featuring a well-defined transient reflectivity state, in between those of the crystalline and amorphous phases. We have also studied the role of material configuration in the phase change dynamics and the mechanisms involved in the re-crystallization process.

Published in:

Journal of Applied Physics  (Volume:109 ,  Issue: 12 )