By Topic

Use of Gaussian Mixture Models and Vector quantization for singing voice classification in commercial music productions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Maazouzi, F. ; LabGED Lab., Univ. of Annaba, Annaba, Algeria ; Bahi, H.

Instead of the expansion of the information retrieval systems, the music information retrieval domain is still an open one. In this context, the singing voice classification is a promised trend. In this paper, we shall present our experiments concerning the classification of singers according to their voice type, and their voice quality. Some experiments were carried in which two sets of parameters are used in addition to the use of two classification approaches: The GMM (Gaussian Mixture Models) and the VQ (Vector quantization). The obtained results were compared to those provided by the related state-of-the-art approaches.

Published in:

Programming and Systems (ISPS), 2011 10th International Symposium on

Date of Conference:

25-27 April 2011