Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

Solidification processes in the Sn-rich part of the SnCu system

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Panchenko, I. ; Electron. Packaging Lab., Tech. Univ. Dresden, Dresden, Germany ; Mueller, M. ; Wiese, S. ; Schindler, S.
more authors

In this study SnCu solder spheres (Ø 270 μm, CR ~ 1 K/s) were investigated in order to verify the solidified microstructure according to the Sn-rich part of the SnCu phase diagram. The investigated alloys are Sn99.9, SnCu0.25, SnCu0.5, SnCu0.7, SnCu0.9, SnCu1.2, SnCu1.5, and SnCu3.0. In order to understand the solidification process, such aspects as morphology, grain structure and undercooling were analysed. The microstructure was investigated by optical microscopy, SEM and EDX. The undercooling was measured by DSC. It will be shown that small SnCu solder spheres solidify not only with commonly known β-Sn dendrites and fine Cu6Sn5 IMCs in the interdendritic spacing, but with specific and systematic changes in morphology, which depend on composition. The successive morphology transitions were found: from 1) fine Cu6Sn5 IMCs in β-Sn to 2) small β-Sn cells to 3) β-Sn cellular/dendritic to 4) fine Cu6Sn5 IMCs in β-Sn or undirected β-Sn cells. The area fraction of these different morphologies and the number of grain orientations were estimated from the cross-sections of about 20 solder spheres per composition. This allows a quantitative description of the microstructure and its compositional dependency. The results also show that the formation of large Cu6Sn5 IMCs provokes more grain orientations compared to SnCu solders solidified without large intermetallic phases.

Published in:

Electronic Components and Technology Conference (ECTC), 2011 IEEE 61st

Date of Conference:

May 31 2011-June 3 2011