By Topic

Perpendicular magnetization of Co2FeAl full-Heusler alloy films induced by MgO interface

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Wen, Zhenchao ; National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba 305-0047, Japan ; Sukegawa, Hiroaki ; Mitani, Seiji ; Inomata, Koichiro

Your organization might have access to this article on the publisher's site. To check, click on this link: 

The perpendicular magnetization of Co2FeAl (CFA) full-Heusler alloy films was achieved in the structures of CFA/MgO and MgO/CFA with the perpendicular magnetic anisotropy energy density (KU) of 2–3×106 erg/cm3, which can be used as the perpendicular ferromagnetic electrodes of MgO-based magnetic tunnel junctions (MTJs) with high thermal stability at sub-50-nm dimension. The CFA thickness dependence of KU was investigated at different annealing temperatures, indicating that the perpendicular anisotropy of CFA is contributed by the interfacial anisotropy between CFA and MgO. This letter will open up a way for obtaining perpendicular magnetization of Co-based full-Heusler alloys, which is promising for further reduction in the critical current of current induced magnetization switching in MgO-based MTJ nanopillars with perpendicular full-Heusler alloy electrodes.

Published in:

Applied Physics Letters  (Volume:98 ,  Issue: 24 )