Cart (Loading....) | Create Account
Close category search window
 

Application of Poisson-based hidden Markov models to in vitro neuronal data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Xydas, D. ; Cybern. Res. Group, Univ. of Reading, Reading, UK ; Spencer, M.C. ; Downes, J.H. ; Hammond, M.W.
more authors

Recent advances in electrophysiological techniques have made it possible to culture in vitro biological networks and closely monitor ensemble neuronal activity using multi-electrode recording techniques. One of the main challenges in this area of research is attempting to understand how intrinsic activity is propagated within these neuronal networks and how it may be manipulated via external stimuli in order to harness their computational capacity. This raises the question of what similarities and differences arise between spontaneous and evoked responses and how external stimulation can be optimally applied in order to robustly control the neuronal plasticity of neuronal cultures. In this paper we present in detail an application of machine learning methods, specifically hidden Markov models with Poisson-based output distributions, with which we aim to perform comparative studies between spontaneous and evoked neuronal activity over different ages of network development.

Published in:

Cybernetic Intelligent Systems (CIS), 2010 IEEE 9th International Conference on

Date of Conference:

1-2 Sept. 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.