By Topic

Energy Efficient Supply of WSN Nodes using Component-Aware Dynamic Voltage Scaling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

Energy efficiency is very important for wireless sensor networks (WSNs), because the consumable energy is limited. Each WSN node has its own power supply. The lifetime of the WSN node depends basically on its average power consumption. Therefore, an efficient supply of the WSN node can enhance the lifetime of it. Typically, the various components of a WSN node (microcontroller, transceiver, sensors) have different supply voltage ranges. To save as much energy as possible, the supply voltage of the node should be as low as possible. Therefore, a voltage converter is needed to reduce the voltage of a battery. The minimum allowed supply voltage depends on the components that are active. The active components and consequently the minimum allowed supply voltage vary over time. Componentaware dynamic voltage scaling (CADVS) can be used to adapt the supply voltage of the node. This work presents the possible energy savings using four different voltage conversion techniques. It has been shown that CADVS can be used to save up to 31.5% of the energy compared to a constant voltage supply using the introduced scenario while achieving the same end-user performance.

Published in:

Wireless Conference 2011 - Sustainable Wireless Technologies (European Wireless), 11th European

Date of Conference:

27-29 April 2011