By Topic

A parallel genetic algorithm approach to solving the unit commitment problem: implementation on the transputer networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hong-Tzer Yang ; Dept. of Electr. Eng., Chung Yuan Christian Univ., Chung Li, Taiwan ; Pai-Chuan Yang ; Ching-Lien Huang

Through a constraint handling technique, this paper proposes a parallel genetic algorithm (GA) approach to solving the thermal unit commitment (UC) problem. The developed algorithm is implemented on an eight-processor transputer network, processors of which are arranged in master-slave and dual-direction ring structures, respectively. The proposed approach has been tested on a 38-unit thermal power system over a 24-hour period. Speed-up and efficiency for each topology with different number of processor are compared to those of the sequential GA approach. The proposed topology of dual-direction ring is shown to be well amenable to parallel implementation of the GA for the UC problem

Published in:

IEEE Transactions on Power Systems  (Volume:12 ,  Issue: 2 )